Graph Encoding and Recursion Computation

Yangjun Chen
University of Winnipeg, Canada

INTRODUCTION

Itisageneral opinionthat rel ational database systemsare
inadequate for manipul ating composite objectsthat arise
in novel applications such as Web and document data-
bases (Abiteboul, Cluet, Christophides, Milo, M oerkotte
& Simon, 1997; Chen & Aberer, 1998, 1999; Mendel zon,
Mihaila& Milo, 1997; Zhang, Naughton, Dewitt, Luo &
Lohman, 2001), CAD/ CAM, CASE, office systems and
software management. Especially, when recursive rela-
tionships areinvolved, it is cumbersome to handle them
inrelational databases, which setscurrent relational sys-
tems far behind the navigational ones (Kuno &
Rundensteiner, 1998; Lee & Lee, 1998). Toovercomethis
problem, a lot of interesting graph encoding methods
have been developed to mitigate the difficulty to some
extent. Inthisarticle, we give abrief description of some
important methods, including analysisand comparison of
their space and time compl exities.

BACKGROUND

A composite object can be generally represented as a
directed graph (digraph). For example,inaCAD database,
a composite object corresponds to a complex design,
which is composed of several subdesigns. Often,
subdesigns are shared by more than one higher-level
design, and a set of design hierarchies thus forms a
directed acyclic graph (DAG). As another example, the
citationindex of scientificliterature, recording reference
relationshi psbetween authors, constructsadirected cyclic
graph. As a third example, we consider the traditional
organization of a company, with a variable number of
manager-subordinatelevels, which can berepresented as
atreehierarchy.

In a relational system, composite objects must be
fragmented acrossmany relations, requiring joinsto gather
all the parts. A typical approach to improving join effi-
ciency isto equip relationswith hidden pointer fieldsfor
coupling thetuplesto bejoined. The so-called join index
isanother auxiliary access pathto mitigatethisdifficulty.
Also, several advanced join algorithms have been sug-
gested, based on hashing and a large main memory. In

addition, adifferent kind of attempt to attainacompromise
solution is to extend relational databases with new fea-
tures, such as clustering of composite objects, by which
the concatenated foreign keys of ancestor paths are
stored in a primary key. Another extension to relational
systemisnested relations (or NF? relations). Althoughiit
can be used to represent composite objects without
sacrificing therelational theory, it suffersfrom the prob-
lem that subrelations cannot be shared. Moreover, recur-
sive relationships cannot be represented by simple nest-
ing because the depth is not fixed. Finally, deductive
databases and object-relational databases can be con-
sidered as two quite different extensions to handle this
problem (Chen, 2003; Ramakrishnan & Ullman, 1995).

In the past decade, a quite different kind of research
has also been done to avoid join operations based on
graph encoding. In this article, we provide an overview
on most important techniques in this area and discuss a
new encoding approach to pack “ancestor paths” in a
relational environment. It needs only O(e-b) time and
O(n-b) space, where b isthe breadth of the graph, defined
to betheleast number of disjoined pathsthat cover all the
nodesof agraph. Thiscomputational complexity isbetter
than any existing method for this problem, including the
graph-based algorithms (Schmitz, 1983), thegraph encod-
ing (Abdeddaim, 1997; Bommel & Beck; Zibin& Gil, 2001)
and the matrix-based algorithms (La Poutre & Leeuwen,
1988).

RECURSION COMPUTATION IN
RELATIONAL DATABASES

We consider composite objectsrepresented by adigraph,
where nodes stand for objects and edges for parent-child
relationships, storedinabinary relation. Inmany applica-
tions, the transitive closure of a digraph needs to be
computed, whichisdefined to beall ancestor-descendant
pairs. For instance, the transitive closure of the graph in
Figure1(a) isshowninFigure 1(b).

Inthisarticle, wemainly overview thegraph encoding
in arelational environment. The following is a typical
structure to accommodate part-subpart relationships
(Cattell & Skeen, 1992):

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of I1GI is prohibited.

Figure 1. A graph and its transitive closure

@) (b)

. Part(Part-id, ...)
. Connection(Parent-id, Child-id, ...)

where Parent-id and Child-id are both foreign keys,
referring to Part-id. In order to speed up the recursion
evaluation, we will associate each node with a pair of
integers, which helps to recognize ancestor-descendant
relationships.

In therest of the article, the following three types of
digraphs will be discussed.

(i) Treehierarchy, in which the parent-child relation-
ship is of one-to-many type; that is, each node has
at most one parent.

(i) Directed acyclic graph (DAG), which occurswhen
the relationship is of many-to-many type, with the
restriction that a part cannot be sub/superpart of
itself (directly orindirectly).

(i) Directed cyclic graph, which contains cycles.

Later we will use the term graph to refer to the

directed graph, since we do not discuss non-directed
ones at all.

Figure 2. Labeling a tree

Graphic Encoding and Recursion Computation

RECURSION WITH RESPECT TO
TREES

Perhaps the most el egant algorithm for encoding isrela-
tive numbering (Schmitz, 1983), which guarantees both
optimal encoding length of logn bits and constant time
recursion testsfor trees. Consider atree T. By traversing
Tinpostorder, eachnodevwill obtainanumber (it canbe
integer or areal number) post(v) to record the order in
which the nodes of the tree are visited. A basic property
of postorder traversal is

post(v) = max{ post(u) | ue descendant(v)}.
Let I(v) be defined by
[(v) = min{ post(u) | ue descendant(v)}.

Then, anode u isadescendant of vif [(v) < post(u) <
post(v).

In terms of this relationship, each node v can be
encoded by an interval [I(v), post(v)] as exemplified by
Figure2(a).

Another interesting graph encoding method is dis-
cussed in Knuth (2003), by which each nodeisassociated
with apair (pre(v), post(v)), where pre(v) represents the
preorder number of v and can be obtained by traversing
T inapreorder. The pair can be used to characterize the
ancestor-descendant relationship as follows.

Proposition 1- Letvand V' betwo nodesof atreeT.

Then, V' isadescendant of vif pre(v') > pre(v) and post(v')
<post(v).

Proof. SeeExercise2.3.2-20in Knuth (1969).

Graphic Encoding and Recursion Computation

If v isadescendant of v, then we know that pre(v’) >
pre(v) according to the preorder search. Now we assume
that post(v') > post(v). Then, according to the postorder
search, either v’ isin some subtree on theright side of v,
or visin the subtree rooted at v', which contradicts the
fact that v' isadescendant of v. Therefore, post(v') must
be less than post(Vv).

Figure 2(b) helpsfor illustration. Thefirst element of
each pair is the preorder number of the corresponding
node and the second is its postorder number. With such
labels, the ancestor-descendant rel ationships can be eas-
ily checked. For instance, by checking the label associ-
ated with b against the label for f, we see that b is an
ancestor of fintermsof Proposition 1. Notethat b’ slabel
is(2,4)andf’slabel is(5, 2),andwehave2<5and 4 > 2.
We also see that since the pairs associated with g and ¢
do not satisfy theconditiongivenin Proposition 1, g must
not be an ancestor of ¢ and vice versa

Definition 1- (label pair subsumption) Let (p, q) and (p’,
g’) betwo pairs associated with nodes u and v. We
say that (p, q) issubsumed by (p’, '), denoted (p,
qQ <@E,q) ifp>p andg<q. Then, uisa
descendant of vif (p, q) issubsumed by (p’, q').

According to the tree labeling discussed previously,
the relational schema to handle recursion can consist of
only onerelation of thefollowing form:

Node(Node id, label_pair, ...),

wherelabel pairisusedtoaccommodatethe preorder and
the postorder numbers of the nodes of a graph, denoted
label pair.preorder and label pair.postorder, respec-
tively. Then, to retrieve the descendants of node x, we
issue two queries as below.

Q: SELECT label_pair

FROM Node
WHERE Node id=x

Letthelabel pair obtained by evaluating Q, bey. Then, the
second query is of the following form:

Q; SELECT *

FROM Node
WHERE label _pair.preorder >y.preorder
and label pair.postorder < y.postorder

From this, we can see that with the tree labeling, the
recursion w.r.t. atree can be handled conveniently in a
relational environment. If atreeisstoredinapreorder, we

can control the search so that it stops when the first pair
that is not subsumed by y is encountered.

RECURSION WITH RESPECT TO
DGAS

In this section, we consider the recursion computation
w.r.t. DAGs.

. Range-compression
The relative numbering was extended to handle
DAGs by (Agrawal, Borgida & Jagadish, 1989).
Their method is called range-compression encod-
ing. It encodes each nodevinaDAG as an integer
id(v), obtained by scanning a certain spanning for-
est of the DAG in postorder. In addition, each node
visassociated with an array A of length k (1 <k <
n),inwhichtheithentryisaninterval [l r,] withthe
property that a node u is a descendant of v if there
exists an integer j such that |, <id(u) < r. Since an
array contains n entries in the worst case, this
encoding method needs O(n?) space and time.

. Cohen’s encoding and EP encoding
Inthelanguageresearch, thegraph encodingisal so
extensively explored for type-subtype checking that
is in essence a recursion computation. Thus, the
methods proposed in that area can be employed in
arelational environment. Perhapsthemost interest-
ing method is Cohen’ sencoding for tree structures
(Cohen, 1991). Itwasgeneralizedto DAGsby Krall,
Vitek and Horspool (1997) intowhat iscalled packed
encoding (PE).

Cohen’ encoding stores with each node vitslevel | ,
itsuniqueidentifierid , aswell asanarray A suchthat for
each node u € ancestor(v), A[l] =id,. The test v e
descendant(u) is then carried out by checking whether
bothl =1 andA[l] =id hold. An example of the actual
encodingisgivenin Figure 3(a).

EPencoding partitionsaDAG into anumber of slices:
S, ..., § for somek such that no two ancestors of anode
can be on the same slice. In addition, each node v is
assigned auniqueidentifier id withinitssliceS. Thus, v
isidentified by thepair (s, id), wheres, isthenumber for
S. Furthermore, each nodevisassociated withanarray A,
such that for all u e ancestor(v), A [s] = id,. The DAG
shown in Figure 3(b) is partitioned into four slices num-
bered 1, 2, 3 and 4, respectively. Accordingly, the DAG
can be encoded as shown in Figure 3(c). We notethat in
EP encoding slices play arole similar to that of levelsin
Cohen’sencoding. In fact, Cohen’s algorithm partitions

Figure 3. Cohen’s encoding and EP encoding

Graphic Encoding and Recursion Computation

atreeintolevelswhile EPencoding partitionsaDAG into
slices. According to Fall (1995), it is NP-hard to find a
minimal partition of slices. Moreover, if thesizesof slices
is bounded by a constant, the array associated with a
nodeis of length O(n) at average. So the space and time
overhead of EP encoding is on the order of O(n?).

. Pre-postorder encoding
Now we discuss a new encoding method, which
needsonly O(e-b) timeand O(n-b) space, wherebis
the breadth of the graph, defined to be the least
number of disjoined paths that cover all the nodes
of agraph.

What we want isto apply the pre-postorder encoding
discussed previously toaDAG. Tothisend, we establish
abranching of the DAG asfollows (Tarjan, 1977).

Definition 2 - (branching) A subgraph B =(V, E’) of a
digraphG=(V, E)iscalledabranchingifitiscycle-

freeand dindegree(v) <1foreveryve V.

Figure 4. A DAG and its branching

Clearly,if for only onenoder, dmdegree(r) =0,andforall
therest of thenodes, v, d, , egree(v) =1, then the branching
isadirectedtreewithrootr. Normally, abranchingisaset
of directedtrees. Now, weassign every edge e asame cost

(e.g., let cost c(e) = 1 for every edge €). We will find a
branching for which the sum of the edge costs, GEZEC(G) ,is

maximum.

For example, the trees shown in Figure 4(b) are a
maximal branching of the graph shown in Figure 4(a) if
each edge has the same cost.

Assumethat the maximal branchingfor G=(V, E)isa
set of trees T,with root r, (i = 1, ..., m). We introduce a
virtual rootr for thebranching and anedger — r,for each
T,, obtaining atree G, called the representation of G. For
instance, the tree shown in Figure 4(c) isthe representa-
tion of the graph shown in Figure 2(a). Using Tarjan’s
algorithmfor finding optimumbranchings(Tarjan, 1977),
we can always find a maximal branching for a directed
graphin O(|E|) timeif the cost for every edgeisequal to
each other. Therefore, the representative treefor aDAG
can be constructed in linear time.

NN

1 S

€ f

@ (b)

r (8
}c{:\o{)‘ @5 K Mo .D
c og “od 3.3)Q% a 8(6, 4)0(8,6)
/\‘Q AO d
eo f 4 l)g 2 6.2
© (d)

Graphic Encoding and Recursion Computation

Figure 5. Linked lists associated with nodes in G

A
PO -—[FH
A
[=[] -—> "]

We can label G, in the same way as shown in the
previous subsection. See Figure 4(d).

InaG, (for some G), anode v can be considered as a
representation of the subtree rooted at v, denoted T_, (V);
and the pair (pre, post) associated with v can be consid-
ered asapointer tov, and thusto T_, (v). (In practice, we
can associate a pointer with such a pair to point to the
corresponding nodeinG,.) Inthefollowing, what wewant
is to construct a pair sequence: (pre,, post,), ..., (pre,
post,) for each node vin G, representing the union of the
subtrees(inG,) rooted respectively at (preJ, postj) (=1,..,
k), which containsall the descendantsof v. Inthisway, the
space overhead for storing the descendants of anode is
dramatically reduced. Later we will show that a pair se-
guence containsat most O(b) pairs, wherebisthebreadth
of G. (The breadth of adigraph is defined to be the least
number of thedisjoint pathsthat cover all thenodes of the
graph.)

Thequestionishow to construct such apair sequence
for each node v so that it corresponds to a union of some
subtreesin G, which contains all the descendants of vin
G. For thispurpose, we sort the nodes of G topologically;
that is, (v, vj) € Eimpliesthat v, appears beforev,in the
sequence of the nodes. The pairs to be generated for a
nodevaresimply storedinalinkedlist A . Initially, each
A, contains only one pair produced by labeling G,.

We scan the topological sequence of the nodes from
the beginning to the end and at each step we do the
following:

Figure 6. An entire merging process

Letvbethenodebeing considered. Letv,, ..., v, bethe
children of v. Merge A with each for the child nodev, (I

=1, .., K) asfollows. AssumeA =p, —p,—...p,and A, =
g, =0, — ... ,, asshownin Figure 5. Assume that both
A and A, areincreasingly ordered. (We say apair pis
larger thananother pair p’, denoted p>p'’ if p.pre>p’.pre
and p.post > p’.post.)

Westep through both A and A, from left toright. Let

p, and q be the pairs encountered. We will make the
following checkings.

Algorithm pair-sequence-merge(A, A,);

(1) Ifp.pre> qj.preand p,-post >q.post, insert q intoA,
after p, , and before p, and move to 0.y

(@ Ifp.pre> qj.preand p,-post <q,.post, removep, from
A, and movetop,,,. (*p,is subsumed by qj.*)

(3 Ifp.pre< q.pre and p,.post > g,-post, ignore q and
movetoq,, . (* q issubsumed by p;; butit should not

beremoved from A, .*)
(4 |Ifp.pre< q.pre and p,.post < g,-post, ignore p,and

movetop,,.
(5) Ifp=p’ andg =q/,ignoreboth(p,q)and(p,q’),
andmoveto(p,,, d,,,) and (pjﬂ’ , qjﬂ’), respectively.
(6) Ifp=niland o # nil, attach therest of A, totheend
of A.

Thefollowing examplehel psforillustration.

Examplel- AssumethatA =(7,7)(11,8)andA,= (4,
3)(8,5)(10,11). Then, theresult of merging A, and A, is(4,
3)(7,7)(10, 11). Figure 6 showstheentiremerging process.

Ineachstep, the A -pair pointedto by pandtheA,-pair
pointed to by q are compared. Inthefirst step, (7, 7) inA,
will bechecked against (4, 3) inA, (seeFigure6(a)). Since
(4,3) issmallerthan(7,7),itwill beinsertedinto A before
(7,7) (seeFigure6(b)). Inthesecond step, (7, 7) inA will
bechecked against (8, 5) inA,. Since(8, 5) issubsumed by
(7,7),wemoveto (10, 11)inA (seeFigure6(c)). Inthethird

i v
A (7, 711,8) 437,711, 8

q

p p p
v /
A 4385101 ©“3(E851W01) ©“3@9(10 1)
A :

@) ©

p p=nil

43(85(1011) ©“3)(8 5)(10,411)
1
q ol q

@ ©

step, (7, 7) issmaller than (10, 11) and we moveto (11, 8)
in A (seeFigure 6(d)). Inthe fourth step, (11, 8) in A is
checkedagainst (10, 11) inA,. Since (11, 8) issubsumed by
(10, 11), itwill beremovedfrom A and p becomesnil (see
Figure 6(e)). Inthis case, (10, 11) will be attached to A,,
formingtheresult A= (4, 3)(7,7)(10, 11) (seeFigure6(e)).

We can store physically the label pair for each node,
aswell asitslabel pair. Concretely, therel ational schema
tohandlerecursionw.r.t.,aDAG can beestablishedinthe
followingform:

Node(Node_id, label, label _sequence, ...),

where label and label _sequence are used to accommo-
date the label pairs and the label pair sequences associ-
ated with the nodes of a graph, respectively. Then, to
retrieve the descendants of node x, we issue two queries.
Thefirst query issimilarto Q,:

Q,; SELECT label_sequence
FROM Node
WHERE Node id=x

Let the label sequence obtained by evaluating Q, be'y.
Then, the second query will be of the following form:

*Q,. SELECT *
FROM Node
WHERE ¢(label,y)

where @(p, s) isaboolean function with the input: p and
s, wherepisapair and sapair sequence. If thereexistsa
pair p’ inssuchthatp<p’ (i.e., p.pre>p’.preand p.post
< p’.post), then ¢(p, s) returns true; otherwise false.
Based on the method discussed in the previous sub-
section, we can easily develop an algorithm to compute
recursion for cyclic graphs. First, we use Tarjan’s algo-
rithm for identifying strongly connected components
(SCCs) tofind thecyclesof acyclic graph (Tarjan, 1972)
(which needsonly O(n+ €) time). Then, wetake each SCC
asasinglenode (i.e., condense each SCC to anode) and
transformacyclicgraphintoaDAG. Next, wehandlethe
DAG asdiscussed earlier. Inthisway, however, all nodes
inan SCCwill beassignedthesamepair (andthesamepair
sequence). For thisreason, the method for computing the
recursion at some node x should be slightly changed.

FUTURE TRENDS

The computation of transitive closures and recursive
relationshipsisaclassic probleminthe graph theory and
has avariety of applicationsin data engineering, such as

Graphic Encoding and Recursion Computation

CADI/CAM, office systems, databases, programming lan-
guagesand so on. For all these applications, the problems
can be represented as a directed graph with the edges
being not labelled, and can be solved using the tech-
niques described in this article. In practice, however,
there exists another kind of problem, which can berepre-
sented only by using the so-called weighted directed
graphs. For them, the edges are associated with labels or
distances and the shortest (or longest) paths between two
given nodes are often asked. Obviously, these tech-
niques are not able to solve such problems. They haveto
be extended to encode path information in the data struc-
tureto speed up query evaluation. For this, aninteresting
issueishow to maintain minimuminformation but get high
efficiency, whichismorechallengingthantransitiveclo-
suresand providesanimportant researchtopicinthenear
future.

CONCLUSION

In this article, we provide an overview on the recursion
computation in a relational environment and present a
new encoding method to label a digraph, which is com-
paredwithavariety of traditional strategiesaswell asthe
methods proposed in the database community. Our
method isbased on atreelabeling method and the concept
of branchingsthat areusedingraphtheory for finding the
shortest connection networks. A branching isasubgraph
of agivendigraphthatisinfact aforest, but coversall the
nodes of the graph. On the one hand, the proposed
encoding scheme achieves the smallest space require-
ments among all previously published strategiesfor rec-
ognizing recursive relationships. On the other hand, it
leadstoanew algorithmfor computing transitive closures
for DAGsin O(e-b) timeand O(n-b) space, wherenrepre-
sents the number of the nodes of a DAG, e the numbers
of the edges, and b the DAG’ s breadth. In addition, this
method can be extended to cyclic digraphs and is espe-
cially suitablefor arelational environment.

REFERENCES

Abdeddaim, S. (1997). On incremental computation of
transitiveclosureand greedy alignment. InA. Apostolico
& J.Hein (Eds.), Proceedingsof 8th Symp. Combinatorial
Pattern Matching (pp. 167-179).

Abiteboul, S., Cluet, S., Christophides, V., Milo, T.,
Moerkotte, G., & Simon, J. (1997, April). Querying docu-
mentsin object databases. | nternational Journal of Digi-
tal Libraries, 1(1),5-19.

Graphic Encoding and Recursion Computation

Agrawal, R., Borgida, A., & Jagadish, J.V. (1989, June).
Efficient management of transitiverelationshipsinlarge
data and knowledge bases. Proceedings of the ACM
SIGMOD Intl. Conf. onthe Management of Data (pp. 253-
262).

Booth,K.S., & Leuker, G.S. (1976, December). Testingfor
the consecutive onesproperty, interval graphs, and graph
palanity using PQ-tree algorithms. Journal of Computer
Sys. i, 13(3), 335-379.

Chen, Y. (2003, May). On the graph traversal and linear
binary-chain programs. |EEE Transactions on Knowl-
edge and Data Engineering, 15(3), 573-596.

Chen, Y., & Aberer, K. (1998). Layeredindex structuresin
document database systems. Proceedings of 7th Int.
Conference on Information and Knowledge Manage-
ment (CIKM), Bethesda, MD (pp. 406-413). ACM.

Chen, Y., & Aberer, K. (1999, September). Combining pat-
treesand signaturefilesfor query evaluationin document
databases. Proceedings of 10th Int. DEXA Conf. on
Database and Expert Systems Application, Florence,
Italy (pp. 473—484). Springer Verlag.

Cohen, N.H. (1991). Type-extension tests can be per-
formed in constant time. ACM Transactionson Program-
ming Languages and Systems, 13, 626-629.

Cattell, R.G.G., & Skeen, J. (1992). Object operations
benchmark. ACM Trans. Database Systems, 17(1), 1-31.

Fall, A. (1995). Sparseterm encoding for dynamical tax-
onomies. Proceedings of 4" | nter national Conf. On Con-
ceptual Structures (ICCS-96): Knowledge Representa-
tionasInterlingua, Berlin (pp. 277-292).

Knuth, D.E. (1969). The art of computer programming
(vol. 1). Reading, MA: Addison-Wesley.

Krall,A.,Vitek, J., & Horspool, R.N. (1997). Near optimal
hierarchical encoding of types. InM. Aksit& S. Matsuoka
(Eds.), Proceedings of 11" European Conf. on Object-
Oriented Programming, Jyvaskyla, Finland (pp. 128-145).

Kuno, H.A., & Rundensteiner, E.A. (1998). Incremental
maintenance of materialized object-oriented views in
MultiView: Strategiesand performanceevaluation. |[EEE
Transactionson Knowledgeand Data Engineering, 10(5),
768-792.

LaPoutre, J.A., & vanLeeuwen, J. (1988). Maintenanceof
transitive closure and transitive reduction of graphs.
Proceedings of Workshop on Graph-Theor etic Concepts
in Computer Science, Lecture Notes in Computer Sci-
ence, 314, 106-120. Springer-Verlag.

Lee, W.C., & Lee, D.L. (1998). Path dictionary: A new
access method for query processing in object-oriented
databases. |EEE Transactions on Knowledge and Data
Engineering, 10(3), 371-388.

Mendelzon, A.O, Mihaila, G.A., & Milo, T. (1997, April).
Querying the World Wide Web. International Journal of
Digital Libraries, 1(1), 54-67.

Ramakrishnan, R., & Ullman, J.D. (1995, May). A survey
of research in deductive database systems. Journal of
Logic Programming, 125-149.

Schmitz, L. (1983). Animproved transitive closurealgo-
rithm. Computing, 30, 359 - 371.

Stonebraker, M., Rowe, L., & Hirohama, M. (1990). The
implementation of POSTGRES. | EEE Trans. Knowledge
and DataEng., 2(1), 125-142.

Tarjan, R. (1972, June). Depth-first searchandlinear graph
algorithms. SIAM J. Compt., 1(2), 146-140.

vanBommel, M.F., & Beck, T.J. (2000). Incremental encod-
ing of multipleinheritance hierarchies supporting lattice
operations. Linkoping Electronic Articles in Computer
and Information Science, http://www.ep.liu.se/ea/cis/
2000/001

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., &. Lohman,
G. (2001). On supporting containment queriesinrel ational
database management systems. Proceedings of ACM
SIGMOD Intl. Conf. on Management of Data, California.

Zibin,Y.,& Gil, J. (2001, October 14-18). Efficient subtyping
tests with PQ-encoding. Proceedings of the 2001 ACM
SIGPLAN Conf. on Object-Oriented Programming Sys-
tems, Languages and Application, Florida (pp. 96-107).

KEY TERMS

Branching: A branching is a subgraph of a directed
graph, in which there are no cycles and the indegree of
each nodeis1or 0.

CyclicGraph: A cyclicgraphisadirected graph that
contains at least one cycle.

DAG: A DAGisadirected graph that doesnot contain
acycle.

Graph Encoding: Graph encoding isamethod to as-
signthenodesof adirected graph anumber or abit string,
which reflects some properties of that graph and can be
used to facilitate computation.

Strongly Connected Component (SCC): AnSCCisa
subgraph of adirected graph, in which between each pair
of nodes there exists a path.

Transitive Closure: The transitive closure of a di-
rected graph Gisagraph G*, inwhichthereisanedgefrom
node a to node b if there exists apath fromatobin G.

Tree: A tree is a graph with a root, in which the
indegree of each node is equal to 1.

Graphic Encoding and Recursion Computation

