
 1

�
��������	
���
�������	����
���
�������
�

Yangjun Chen
University of Winnipeg, Canada

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

It is a general opinion that relational database systems are
inadequate for manipulating composite objects that arise
in novel applications such as Web and document data-
bases (Abiteboul, Cluet, Christophides, Milo, Moerkotte
& Simon, 1997; Chen & Aberer, 1998, 1999; Mendelzon,
Mihaila & Milo, 1997; Zhang, Naughton, Dewitt, Luo &
Lohman, 2001), CAD/ CAM, CASE, office systems and
software management. Especially, when recursive rela-
tionships are involved, it is cumbersome to handle them
in relational databases, which sets current relational sys-
tems far behind the navigational ones (Kuno &
Rundensteiner, 1998; Lee & Lee, 1998). To overcome this
problem, a lot of interesting graph encoding methods
have been developed to mitigate the difficulty to some
extent. In this article, we give a brief description of some
important methods, including analysis and comparison of
their space and time complexities.

BACKGROUND

A composite object can be generally represented as a
directed graph (digraph). For example, in a CAD database,
a composite object corresponds to a complex design,
which is composed of several subdesigns. Often,
subdesigns are shared by more than one higher-level
design, and a set of design hierarchies thus forms a
directed acyclic graph (DAG). As another example, the
citation index of scientific literature, recording reference
relationships between authors, constructs a directed cyclic
graph. As a third example, we consider the traditional
organization of a company, with a variable number of
manager-subordinate levels, which can be represented as
a tree hierarchy.

In a relational system, composite objects must be
fragmented across many relations, requiring joins to gather
all the parts. A typical approach to improving join effi-
ciency is to equip relations with hidden pointer fields for
coupling the tuples to be joined. The so-called join index
is another auxiliary access path to mitigate this difficulty.
Also, several advanced join algorithms have been sug-
gested, based on hashing and a large main memory. In

addition, a different kind of attempt to attain a compromise
solution is to extend relational databases with new fea-
tures, such as clustering of composite objects, by which
the concatenated foreign keys of ancestor paths are
stored in a primary key. Another extension to relational
system is nested relations (or NF2 relations). Although it
can be used to represent composite objects without
sacrificing the relational theory, it suffers from the prob-
lem that subrelations cannot be shared. Moreover, recur-
sive relationships cannot be represented by simple nest-
ing because the depth is not fixed. Finally, deductive
databases and object-relational databases can be con-
sidered as two quite different extensions to handle this
problem (Chen, 2003; Ramakrishnan & Ullman, 1995).

In the past decade, a quite different kind of research
has also been done to avoid join operations based on
graph encoding. In this article, we provide an overview
on most important techniques in this area and discuss a
new encoding approach to pack “ancestor paths” in a
relational environment. It needs only O(e·b) time and
O(n·b) space, where b is the breadth of the graph, defined
to be the least number of disjoined paths that cover all the
nodes of a graph. This computational complexity is better
than any existing method for this problem, including the
graph-based algorithms (Schmitz, 1983), the graph encod-
ing (Abdeddaim, 1997; Bommel & Beck; Zibin & Gil, 2001)
and the matrix-based algorithms (La Poutre & Leeuwen,
1988).

RECURSION COMPUTATION IN
RELATIONAL DATABASES

We consider composite objects represented by a digraph,
where nodes stand for objects and edges for parent-child
relationships, stored in a binary relation. In many applica-
tions, the transitive closure of a digraph needs to be
computed, which is defined to be all ancestor-descendant
pairs. For instance, the transitive closure of the graph in
Figure 1(a) is shown in Figure 1(b).

In this article, we mainly overview the graph encoding
in a relational environment. The following is a typical
structure to accommodate part-subpart relationships
(Cattell & Skeen, 1992):

2

Graphic Encoding and Recursion Computation

• Part(Part-id, ...)
• Connection(Parent-id, Child-id, ...)

where Parent-id and Child-id are both foreign keys,
referring to Part-id. In order to speed up the recursion
evaluation, we will associate each node with a pair of
integers, which helps to recognize ancestor-descendant
relationships.

In the rest of the article, the following three types of
digraphs will be discussed.

(i) Tree hierarchy, in which the parent-child relation-
ship is of one-to-many type; that is, each node has
at most one parent.

(ii) Directed acyclic graph (DAG), which occurs when
the relationship is of many-to-many type, with the
restriction that a part cannot be sub/superpart of
itself (directly or indirectly).

(iii) Directed cyclic graph, which contains cycles.

Later we will use the term graph to refer to the
directed graph, since we do not discuss non-directed
ones at all.

RECURSION WITH RESPECT TO
TREES

Perhaps the most elegant algorithm for encoding is rela-
tive numbering (Schmitz, 1983), which guarantees both
optimal encoding length of logn bits and constant time
recursion tests for trees. Consider a tree T. By traversing
T in postorder, each node v will obtain a number (it can be
integer or a real number) post(v) to record the order in
which the nodes of the tree are visited. A basic property
of postorder traversal is

post(v) = max{ post(u) | u ∈ descendant(v)}.

Let l(v) be defined by

l(v) = min{ post(u) | u ∈ descendant(v)}.

Then, a node u is a descendant of v if l(v) ≤ post(u) ≤
post(v).

In terms of this relationship, each node v can be
encoded by an interval [l(v), post(v)] as exemplified by
Figure 2(a).

Another interesting graph encoding method is dis-
cussed in Knuth (2003), by which each node is associated
with a pair (pre(v), post(v)), where pre(v) represents the
preorder number of v and can be obtained by traversing
T in a preorder. The pair can be used to characterize the
ancestor-descendant relationship as follows.

Proposition 1 - Let v and v’ be two nodes of a tree T.
Then, v’ is a descendant of v if pre(v’) > pre(v) and post(v’)

< post(v).
Proof. See Exercise 2.3.2-20 in Knuth (1969).

(a)

b
c

a

d

e

Figure 1. A graph and its transitive closure

Figure 2. Labeling a tree

[2, 2]

[2, 3] [1, 1]

[6, 6] [5, 5] [1, 4]

a

b g h

c e

f (5, 2)

(4, 3) (3, 1)

(7, 6) (6, 5) (2, 4)

a

b g h

c e

f

(1, 7)

(b) (a)

Figure 2. Labeling a tree

(b)

e

b
c

a

d

 3

Graphic Encoding and Recursion Computation

�
If v’ is a descendant of v, then we know that pre(v’) >

pre(v) according to the preorder search. Now we assume
that post(v’) > post(v). Then, according to the postorder
search, either v’ is in some subtree on the right side of v,
or v is in the subtree rooted at v’, which contradicts the
fact that v’ is a descendant of v. Therefore, post(v’) must
be less than post(v).

Figure 2(b) helps for illustration. The first element of
each pair is the preorder number of the corresponding
node and the second is its postorder number. With such
labels, the ancestor-descendant relationships can be eas-
ily checked. For instance, by checking the label associ-
ated with b against the label for f, we see that b is an
ancestor of f in terms of Proposition 1. Note that b’s label
is (2, 4) and f’s label is (5, 2), and we have 2 < 5 and 4 > 2.
We also see that since the pairs associated with g and c
do not satisfy the condition given in Proposition 1, g must
not be an ancestor of c and vice versa.

Definition 1 - (label pair subsumption) Let (p, q) and (p’,
q’) be two pairs associated with nodes u and v. We
say that (p, q) is subsumed by (p’, q’), denoted (p,
q) � (p’, q’), if p > p’ and q < q’. Then, u is a
descendant of v if (p, q) is subsumed by (p’, q’).

According to the tree labeling discussed previously,
the relational schema to handle recursion can consist of
only one relation of the following form:

Node(Node_id, label_pair, ...),

where label_pair is used to accommodate the preorder and
the postorder numbers of the nodes of a graph, denoted
label_pair.preorder and label_pair.postorder, respec-
tively. Then, to retrieve the descendants of node x, we
issue two queries as below.

Q
1
: SELECT label_pair

FROM Node
WHERE Node_id = x

Let the label pair obtained by evaluating Q
1
 be y. Then, the

second query is of the following form:

Q
2
: SELECT *

FROM Node
WHERE label_pair.preorder > y.preorder
and label_pair.postorder < y.postorder

From this, we can see that with the tree labeling, the
recursion w.r.t. a tree can be handled conveniently in a
relational environment. If a tree is stored in a preorder, we

can control the search so that it stops when the first pair
that is not subsumed by y is encountered.

RECURSION WITH RESPECT TO
DGAS

In this section, we consider the recursion computation
w.r.t. DAGs.

• Range-compression
The relative numbering was extended to handle
DAGs by (Agrawal, Borgida & Jagadish, 1989).
Their method is called range-compression encod-
ing. It encodes each node v in a DAG as an integer
id(v), obtained by scanning a certain spanning for-
est of the DAG in postorder. In addition, each node
v is associated with an array A of length k (1 ≤ k ≤
n), in which the ith entry is an interval [l

i
, r

i
] with the

property that a node u is a descendant of v if there
exists an integer j such that l

i
 ≤ id(u) ≤ r

j
. Since an

array contains n entries in the worst case, this
encoding method needs O(n2) space and time.

• Cohen’s encoding and EP encoding
In the language research, the graph encoding is also
extensively explored for type-subtype checking that
is in essence a recursion computation. Thus, the
methods proposed in that area can be employed in
a relational environment. Perhaps the most interest-
ing method is Cohen’s encoding for tree structures
(Cohen, 1991). It was generalized to DAGs by Krall,
Vitek and Horspool (1997) into what is called packed
encoding (PE).

Cohen’ encoding stores with each node v its level l
v
,

its unique identifier id
v
, as well as an array A

v
 such that for

each node u ∈ ancestor(v), A
v
[l

u
] = id

u
. The test v ∈

descendant(u) is then carried out by checking whether
both l

v
 ≥ l

u
 and A

v
[l

u
] = id

u
 hold. An example of the actual

encoding is given in Figure 3(a).
EP encoding partitions a DAG into a number of slices:

S
1
, ..., S

k
 for some k such that no two ancestors of a node

can be on the same slice. In addition, each node v is
assigned a unique identifier id

v
 within its slice S. Thus, v

is identified by the pair (s
v
, id

v
), where s

v
 is the number for

S. Furthermore, each node v is associated with an array A
v

such that for all u ∈ ancestor(v), A
v
[s

u
] = id

v
. The DAG

shown in Figure 3(b) is partitioned into four slices num-
bered 1, 2, 3 and 4, respectively. Accordingly, the DAG
can be encoded as shown in Figure 3(c). We note that in
EP encoding slices play a role similar to that of levels in
Cohen’s encoding. In fact, Cohen’s algorithm partitions

4

Graphic Encoding and Recursion Computation

a tree into levels while EP encoding partitions a DAG into
slices. According to Fall (1995), it is NP-hard to find a
minimal partition of slices. Moreover, if the sizes of slices
is bounded by a constant, the array associated with a
node is of length O(n) at average. So the space and time
overhead of EP encoding is on the order of O(n2).

• Pre-postorder encoding
Now we discuss a new encoding method, which
needs only O(e·b) time and O(n·b) space, where b is
the breadth of the graph, defined to be the least
number of disjoined paths that cover all the nodes
of a graph.

What we want is to apply the pre-postorder encoding
discussed previously to a DAG. To this end, we establish
a branching of the DAG as follows (Tarjan, 1977).

Definition 2 - (branching) A subgraph B = (V, E’) of a
digraph G = (V, E) is called a branching if it is cycle-
free and d

indegree
(v) ≤ 1 for every v ∈ V.

Clearly, if for only one node r, d
indegree

(r) = 0, and for all
the rest of the nodes, v, d

indegree
(v) = 1, then the branching

is a directed tree with root r. Normally, a branching is a set
of directed trees. Now, we assign every edge e a same cost
(e.g., let cost c(e) = 1 for every edge e). We will find a

branching for which the sum of the edge costs, ∑
∈Ee

ec)(, is

maximum.
For example, the trees shown in Figure 4(b) are a

maximal branching of the graph shown in Figure 4(a) if
each edge has the same cost.

Assume that the maximal branching for G = (V, E) is a
set of trees T

i
with root r

i
(i = 1, ..., m). We introduce a

virtual root r for the branching and an edge r →→→→→ r
i
for each

T
i
, obtaining a tree G

r
, called the representation of G. For

instance, the tree shown in Figure 4(c) is the representa-
tion of the graph shown in Figure 2(a). Using Tarjan’s
algorithm for finding optimum branchings (Tarjan, 1977),
we can always find a maximal branching for a directed
graph in O(|E|) time if the cost for every edge is equal to
each other. Therefore, the representative tree for a DAG
can be constructed in linear time.

(4, 2)

(4, 3) (2, 1)

(2,2)

a

b g h

c e

f

l=1, id=1

l=2
id=1

l=2
id=2

l=2
id=3

l=3
id=1

l=3
id=2

l=4
id=1

(a) (b) (c)

a

b g h

c e

f

(1, 1)

(4, 1)

(3, 1)

1

1
1 1

2 1
3

1
1
1

1
1
2 1

1
2
1

a

b g h

c e

f

1

3
4

2

1
1
1
2

1
0
0
0

1
1
0
0 1

2
0
0

1
1
0
1

1
0
0
3

1
1
1
0

Figure 3. Cohen’s encoding and EP encoding

(a) (b) (c) (d)

Figure 4. A DAG and its branching

f

c
a b

dg

e
f

c
a b

d g

e f

c
a b

dg

e

r

(6, 4)

(4, 1)

(3, 3)

(2, 5)

e

g d

f

c
a b

r (1, 8)

(5, 2)

(8, 6)

(7, 7)

 5

Graphic Encoding and Recursion Computation

�

We can label G
r
 in the same way as shown in the

previous subsection. See Figure 4(d).
In a G

r
 (for some G), a node v can be considered as a

representation of the subtree rooted at v, denoted T
sub

(v);
and the pair (pre, post) associated with v can be consid-
ered as a pointer to v, and thus to T

sub
(v). (In practice, we

can associate a pointer with such a pair to point to the
corresponding node in G

r
.) In the following, what we want

is to construct a pair sequence: (pre
1
, post

1
), ..., (pre

k
,

post
k
) for each node v in G, representing the union of the

subtrees (in G
r
) rooted respectively at (pre

j
, post

j
) (j = 1, ...,

k), which contains all the descendants of v. In this way, the
space overhead for storing the descendants of a node is
dramatically reduced. Later we will show that a pair se-
quence contains at most O(b) pairs, where b is the breadth
of G. (The breadth of a digraph is defined to be the least
number of the disjoint paths that cover all the nodes of the
graph.)

The question is how to construct such a pair sequence
for each node v so that it corresponds to a union of some
subtrees in G

r
, which contains all the descendants of v in

G. For this purpose, we sort the nodes of G topologically;
that is, (v

i
, v

j
) ∈ E implies that v

j
appears before v

i
in the

sequence of the nodes. The pairs to be generated for a
node v are simply stored in a linked list A

v
. Initially, each

A
v
 contains only one pair produced by labeling G

r
.

We scan the topological sequence of the nodes from
the beginning to the end and at each step we do the
following:

Let v be the node being considered. Let v
1
, ..., v

k
be the

children of v. Merge A
v
 with each for the child node v

l
(l

= 1, ..., k) as follows. Assume A
v
 = p

1
 →p

2
 →... p

g
 and ivA =

q
1
 →q

2
 → ... q

h
, as shown in Figure 5. Assume that both

A
v
and ivA are increasingly ordered. (We say a pair p is

larger than another pair p’, denoted p > p’ if p.pre > p’.pre
and p.post > p’.post.)

We step through both A
v
 and ivA from left to right. Let

p
i
 and q

j
 be the pairs encountered. We will make the

following checkings.

Algorithm pair-sequence-merge(A
i
, ivA);

(1) If p
i
.pre > q

j
.pre and p

i
.post > q

j
.post, insert q

j
 into A

v

after p
i-1

 and before p
i
 and move to q

j+1
.

(2) If p
i
.pre > q

j
.pre and p

i
.post < q

j
.post, remove p

i
 from

A
v
and move to p

i+1
. (*p

i
is subsumed by q

j
.*)

(3) If p
i
.pre < q

j
.pre and p

i
.post > q

j
.post, ignore q

j
and

move to q
j+1

. (*q
j
 is subsumed by p

i
; but it should not

be removed from ivA .*)

(4) If p
i
.pre < q

j
.pre and p

i
.post < q

j
.post, ignore p

i
and

move to p
i+1

.
(5) If p

i
 = p

j
’ and q

i
 = q

j
’, ignore both (p

i
, q

i
) and (p

j
’, q

j
’),

and move to (p
i+1

, q
i+1

) and (p
j+1

’, q
j+1

’), respectively.

(6) If p
i
 = nil and q

j
 ≠ nil, attach the rest of ivA to the end

of A
v
.

The following example helps for illustration.

Example 1 - Assume that A
1
 = (7, 7)(11, 8) and A

2
 = (4,

3)(8, 5)(10, 11). Then, the result of merging A
1
 and A

2
 is (4,

3)(7, 7)(10, 11). Figure 6 shows the entire merging process.
In each step, the A

1
-pair pointed to by p and the A

2
-pair

pointed to by q are compared. In the first step, (7, 7) in A
1

will be checked against (4, 3) in A
2
 (see Figure 6(a)). Since

(4, 3) is smaller than (7, 7), it will be inserted into A
1
 before

(7, 7) (see Figure 6(b)). In the second step, (7, 7) in A
1
 will

be checked against (8, 5) in A
2
. Since (8, 5) is subsumed by

(7, 7), we move to (10, 11) in A
2
(see Figure 6(c)). In the third

Figure 5. Linked lists associated with nodes in G

(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(10, 11)
(4, 3)(8, 5)(10, 11)

p = nil

q

A1:
A2:

A

(a) (b) (c) (d) (e)

Figure 6. An entire merging process

Av:

 p1 p2 pg

vi
A :
 q1 q2 qh

6

Graphic Encoding and Recursion Computation

step, (7, 7) is smaller than (10, 11) and we move to (11, 8)
in A

1
(see Figure 6(d)). In the fourth step, (11, 8) in A

1
 is

checked against (10, 11) in A
2
. Since (11, 8) is subsumed by

(10, 11), it will be removed from A
1
and p becomes nil (see

Figure 6(e)). In this case, (10, 11) will be attached to A
1
,

forming the result A = (4, 3)(7, 7)(10, 11) (see Figure 6(e)).
We can store physically the label pair for each node,

as well as its label pair. Concretely, the relational schema
to handle recursion w.r.t., a DAG can be established in the
following form:

Node(Node_id, label, label_sequence, ...),

where label and label_sequence are used to accommo-
date the label pairs and the label pair sequences associ-
ated with the nodes of a graph, respectively. Then, to
retrieve the descendants of node x, we issue two queries.
The first query is similar to Q

1
:

Q
3
: SELECT label_sequence

FROM Node
WHERE Node_id = x

Let the label sequence obtained by evaluating Q
3
 be y.

Then, the second query will be of the following form:

•Q
4
: SELECT *

FROM Node
 WHERE φ(label, y)

where φ(p, s) is a boolean function with the input: p and
s, where p is a pair and s a pair sequence. If there exists a
pair p’ in s

such that p � p’ (i.e., p.pre > p’.pre and p.post

< p’.post), then φ(p, s) returns true; otherwise false.
Based on the method discussed in the previous sub-

section, we can easily develop an algorithm to compute
recursion for cyclic graphs. First, we use Tarjan’s algo-
rithm for identifying strongly connected components
(SCCs) to find the cycles of a cyclic graph (Tarjan, 1972)
(which needs only O(n + e) time). Then, we take each SCC
as a single node (i.e., condense each SCC to a node) and
transform a cyclic graph into a DAG. Next, we handle the
DAG as discussed earlier. In this way, however, all nodes
in an SCC will be assigned the same pair (and the same pair
sequence). For this reason, the method for computing the
recursion at some node x should be slightly changed.

FUTURE TRENDS

The computation of transitive closures and recursive
relationships is a classic problem in the graph theory and
has a variety of applications in data engineering, such as

CAD/CAM, office systems, databases, programming lan-
guages and so on. For all these applications, the problems
can be represented as a directed graph with the edges
being not labelled, and can be solved using the tech-
niques described in this article. In practice, however,
there exists another kind of problem, which can be repre-
sented only by using the so-called weighted directed
graphs. For them, the edges are associated with labels or
distances and the shortest (or longest) paths between two
given nodes are often asked. Obviously, these tech-
niques are not able to solve such problems. They have to
be extended to encode path information in the data struc-
ture to speed up query evaluation. For this, an interesting
issue is how to maintain minimum information but get high
efficiency, which is more challenging than transitive clo-
sures and provides an important research topic in the near
future.

CONCLUSION

In this article, we provide an overview on the recursion
computation in a relational environment and present a
new encoding method to label a digraph, which is com-
pared with a variety of traditional strategies as well as the
methods proposed in the database community. Our
method is based on a tree labeling method and the concept
of branchings that are used in graph theory for finding the
shortest connection networks. A branching is a subgraph
of a given digraph that is in fact a forest, but covers all the
nodes of the graph. On the one hand, the proposed
encoding scheme achieves the smallest space require-
ments among all previously published strategies for rec-
ognizing recursive relationships. On the other hand, it
leads to a new algorithm for computing transitive closures
for DAGs in O(e·b) time and O(n·b) space, where n repre-
sents the number of the nodes of a DAG, e the numbers
of the edges, and b the DAG’s breadth. In addition, this
method can be extended to cyclic digraphs and is espe-
cially suitable for a relational environment.

REFERENCES

Abdeddaim, S. (1997). On incremental computation of
transitive closure and greedy alignment. In A. Apostolico
& J. Hein (Eds.), Proceedings of 8th Symp. Combinatorial
Pattern Matching (pp. 167-179).

Abiteboul, S., Cluet, S., Christophides, V., Milo, T.,
Moerkotte, G., & Simon, J. (1997, April). Querying docu-
ments in object databases. International Journal of Digi-
tal Libraries, 1(1), 5-19.

 7

Graphic Encoding and Recursion Computation

�
Agrawal, R., Borgida, A., & Jagadish, J.V. (1989, June).
Efficient management of transitive relationships in large
data and knowledge bases. Proceedings of the ACM
SIGMOD Intl. Conf. on the Management of Data (pp. 253-
262).

Booth, K.S., & Leuker, G.S. (1976, December). Testing for
the consecutive ones property, interval graphs, and graph
palanity using PQ-tree algorithms. Journal of Computer
Sys. Sci., 13(3), 335-379.

Chen, Y. (2003, May). On the graph traversal and linear
binary-chain programs. IEEE Transactions on Knowl-
edge and Data Engineering, 15(3), 573-596.

Chen, Y., & Aberer, K. (1998). Layered index structures in
document database systems. Proceedings of 7th Int.
Conference on Information and Knowledge Manage-
ment (CIKM), Bethesda, MD (pp. 406-413). ACM.

Chen, Y., & Aberer, K. (1999, September). Combining pat-
trees and signature files for query evaluation in document
databases. Proceedings of 10th Int. DEXA Conf. on
Database and Expert Systems Application, Florence,
Italy (pp. 473–484). Springer Verlag.

Cohen, N.H. (1991). Type-extension tests can be per-
formed in constant time. ACM Transactions on Program-
ming Languages and Systems, 13, 626-629.

Cattell, R.G.G., & Skeen, J. (1992). Object operations
benchmark. ACM Trans. Database Systems, 17(1), 1 -31.

Fall, A. (1995). Sparse term encoding for dynamical tax-
onomies. Proceedings of 4th International Conf. On Con-
ceptual Structures (ICCS-96): Knowledge Representa-
tion as Interlingua, Berlin (pp. 277-292).

Knuth, D.E. (1969). The art of computer programming
(vol. 1). Reading, MA: Addison-Wesley.

Krall, A., Vitek, J., & Horspool, R.N. (1997). Near optimal
hierarchical encoding of types. In M. Aksit & S. Matsuoka
(Eds.), Proceedings of 11th European Conf. on Object-
Oriented Programming, Jyvaskyla, Finland (pp. 128-145).

Kuno, H.A., & Rundensteiner, E.A. (1998). Incremental
maintenance of materialized object-oriented views in
MultiView: Strategies and performance evaluation. IEEE
Transactions on Knowledge and Data Engineering, 10(5),
768-792.

La Poutre, J.A., & van Leeuwen, J. (1988). Maintenance of
transitive closure and transitive reduction of graphs.
Proceedings of Workshop on Graph-Theoretic Concepts
in Computer Science, Lecture Notes in Computer Sci-
ence, 314, 106-120. Springer-Verlag.

Lee, W.C., & Lee, D.L. (1998). Path dictionary: A new
access method for query processing in object-oriented
databases. IEEE Transactions on Knowledge and Data
Engineering, 10(3), 371-388.

Mendelzon, A.O, Mihaila, G.A., & Milo, T. (1997, April).
Querying the World Wide Web. International Journal of
Digital Libraries, 1(1), 54-67.

Ramakrishnan, R., & Ullman, J.D. (1995, May). A survey
of research in deductive database systems. Journal of
Logic Programming, 125-149.

Schmitz, L. (1983). An improved transitive closure algo-
rithm. Computing, 30, 359 - 371.

Stonebraker, M., Rowe, L., & Hirohama, M. (1990). The
implementation of POSTGRES. IEEE Trans. Knowledge
and Data Eng., 2(1), 125-142.

Tarjan, R. (1972, June). Depth-first search and linear graph
algorithms. SIAM J. Compt., 1(2), 146-140.

van Bommel, M.F., & Beck, T.J. (2000). Incremental encod-
ing of multiple inheritance hierarchies supporting lattice
operations. Linkoping Electronic Articles in Computer
and Information Science, http://www.ep.liu.se/ea/cis/
2000/001

Zhang, C., Naughton, J., DeWitt, D., Luo, Q., &. Lohman,
G. (2001). On supporting containment queries in relational
database management systems. Proceedings of ACM
SIGMOD Intl. Conf. on Management of Data, California.

Zibin, Y., & Gil, J. (2001, October 14-18). Efficient subtyping
tests with PQ-encoding. Proceedings of the 2001 ACM
SIGPLAN Conf. on Object-Oriented Programming Sys-
tems, Languages and Application, Florida (pp. 96-107).

KEY TERMS

Branching: A branching is a subgraph of a directed
graph, in which there are no cycles and the indegree of
each node is 1 or 0.

Cyclic Graph: A cyclic graph is a directed graph that
contains at least one cycle.

DAG: A DAG is a directed graph that does not contain
a cycle.

Graph Encoding: Graph encoding is a method to as-
sign the nodes of a directed graph a number or a bit string,
which reflects some properties of that graph and can be
used to facilitate computation.

8

Graphic Encoding and Recursion Computation

Strongly Connected Component (SCC): An SCC is a
subgraph of a directed graph, in which between each pair
of nodes there exists a path.

Transitive Closure: The transitive closure of a di-
rected graph G is a graph G*, in which there is an edge from
node a to node b if there exists a path from a to b in G.

Tree: A tree is a graph with a root, in which the
indegree of each node is equal to 1.

